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A neighboring extremal guidance law for systems with piecewise linear

control using multiple optimization along the suboptimal trajectory is devel-

oped. The guidance law computes control gains that relate the difference in the

perturbed and nominal trajectory with a control update. Previous research in

neighboring extremal control has concentrated on calculating the control gains

using a single optimization from the initial conditions to the final constraint

manifold. The purpose of this study is to develop a more optimal method

of computing the control gains at each node through multiple optimization.
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Multiple optimization reoptimizes the trajectory from each control node on

the suboptimal trajectory. The suboptimal control vectors for each subtra-

jectory are used to compute a more optimal set of control gains. An example

optimization problem, the lunar launch problem, is used to compare the perfor-

mance of both the single optimization and multiple optimization control laws.

Overall, the multiple optimization gains returned results comparable to those

achieved with single optimization. For perturbations of ±5% in either grav-

ity or thrust acceleration, endpoint conditions for multiple optimization gains

never exceeded more than 50 feet in position or 4.3 ft/sec in vertical velocity

from the desired boundary conditions. Direct comparisons of performance for

specific model perturbations result in mixed conclusions. For thrust pertur-

bations, single optimization gains deleiver smaller errors in meeting end point

conditions, while for gravity perturbations, multiple gains give better results.

v
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Chapter 1

Introduction

An inherent problem in optimal and suboptimal control is that the

optimal trajectory is not usually realizable. Unpredicted model errors and/or

perturbations in the initial conditions can reqult in deviations from the optimal

trajectory. Recomputing the revised optimal control from the point of pertur-

bation to the final constraint manifold is not always possible due to computer

processing limitations. As a result, the precomputed optimal control does not

produce the desired trajectory.

In light of these deviations, one approach to optimal control is to pro-

vide guidance in the neighborhood of the optimal trajectory. Assuming model

errors and perturbations are small enough, the neighboring extremal guidance

should keep the perturbed trajectory in the neighborhood of the extremal, or

optimal, path.

The purpose of this research is to develop a multiple optimization

neighboring extremal guidance law for systems using piecewise linear control

and apply it to a representative problem. The guidance law provides updates to

the suboptimal control vector based on errors in the perturbed versus the nom-

inal trajectory and precomputed neighboring extremal gains. The neighboring

extremal control gains are found by finding the change in control required to

minimize the change in the performance index subject to the trajectory reach-

1
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ing the final constraints.

Two methods of :omputing these gains are presented and discussed.

In the first method the gains are computed along the optimal trajectory at node

points corresponding to the piecewise linear control nodes. The second method

reoptimizes from each node alo'g the optimal trajectory to the final constraint

manifold. The neighboring extremal gains are then computed by integrating

back from the final constraint manifold along the reoptimized trajectory to

each node.

To test each approach, a simple example, the lunar launch problem, is

used. The lunar launch problem involves placing a vehicle in a low moon orbit,

in minimum time, subject to constraints on the final conditions. Perturbations

in vehicle acceleration and lunar gravity are used to test the ability of the

control law to correct for "model errors" and reach the desired final conditions.



Chapter 2

Suboptimal Control Problem

The fixed final time problem is to find the control, u(t), that minimizes

the performance index

J = O(xf), (2.1)

with system dynamics

= f(t,x,u), (2.2)

and initial conditions

to = to. , X0 = X0., (2.3)

subject to boundary constraints

b(Xf) = 0. (2.4)

The solution to this system of equatioLs produces the optimal control

history, u(t). However, often the system of equations cannot be solved in a

closed form or may be too complicated to solve numerically. By parametriz-

ing the control, a nonlinear programming code is employed to solve for the

suboptimal control.

Consider a suboptimal control that is of the class of piecewise linear

functions. For this study only a single control is considered; however, the results

3
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can be generalized to include multiple control systems. Hence, the control is

expressed as a parameter vector

aT = [aii,arz,... ,a,.], (2.5)

where r is the number of control points or nodes along the trajectory. By

normalizing the variable of integration so the integration limits are 0 to 1, the

control nodes become fixed as fractional representations. If a new variable of

integration, r, is defined as

tf
tT ' =(2.6)

the system dynamics become

I=dxX - tjf(tjr, x,a) = g(r, tf,x,a), (2.7)
dr

where

r 0 0, r! =1. (2.8)

Since the states are a function of the parametrized control, the fixed

final time, suboptimal control problem is to find the piecewise continuous con-

trol, a, that minimizes the performance index

J = O(xf (a)), (2.9)

with boundary constraints

O(x! (a)) = 0, (2.10)

subject to system dynamics

dx
Ix'=r = 9(7",t,~a), (2.11)

d-r
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where

TO = 0, rf = 1. (2.12)

The suboptimal control vector, a, is obtained using the nonlinear pro-

gramnming code VF02AD. Equipped with the suboptimal control and trajectory,

the neighboring extremal guidance law can be developed.



Chapter 3

Neighboring Extremal Control

The suboptimal control solution provides a control history and a nom-

inal trajectory that minimizes the performance index. As long as the vehicle

remains on the nominal trajectory, the control law guides the vehicle to the

desired final conditions in the minimum time. Realistically, however, the nom-

inal trajectory is rarely achieved. Perturbations in initial conditions or model

errors produce deviations from this trajectory. The goal of neighboring ex-

tremal control is to develop a guidance law for the perturbed trajectory in the

neighborhood of the nominal trajectory. The guidance law provides control

corrections that ultimately reduce the change in the performance index of the

perturbed trajectory from that of the nominal trajectory.

3.1 Neighboring Control Derivation

The basis of developing a neighboring extremal control law is to find

the change in control required to minimize the increase in the performance

index from the point of the perturbation to the final constraint manifold. The

derivation of this control law was originally developed by Hull and Helfrich [1].

A summary of the basic derivation is included here for completeness.

Since xf = xj(a) from Eq. (2.11), the augmented performance index

6
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for the suboptimal control problem is expressed as

J, = O(x,) + vT,(z1 ) =- G(a, v), (3.1)

where 4i is the performance index, 0 is the vector of final constraints and v is

the vector of Lagrange multipliers. The change in the performance index for a

perturbation in the control vector, a, to second order is
1T

AJX = Gata + 1..a T G a (3.2)
2 !

Since the first variation vanishes on the extremal path, the change in the per-

formance index is approximated as

AX = Y..a .G6a. (3.3)

In Eq. (3.3), the 6a's are not independent since the final conditions

must be satisfied. Hence, it is necessary to determine the relationship between

6a and bxo such that 60 = ,f bxf!= 0. Eq. (2.11) relates the state and the

control through a set of differential equations. Taking the variation of this

equation results in

bx' = g5zb + g•ba, (3.4)

with boundary conditions

r = 00, Tr = 1, (3.5)

6xz0 = 6xo, (3.6)

bf ,bz 1 = 0. (3.7)

A solution of the form

bx = O6xf + T6a (3.8)
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is assumed, with boundary conditions

Is = I, (3.9)

1 1=0, (3.10)

and substituted into Eq. (3.4). This results in

(4"- g_')6bx + (V'- - g,- )ba = 0. (3.11)

To satisfy Eq. (3.11) the coefficients of bx! and 5a are chosen to equal zero.

This produces the differential equations governing 40 and %P:

lot = g-4 (3.12)

and

T'= gX -+ g. (3.13)

with final conditions

'o 1=, (3.14)

IPy=0. (3.15)

These differential equations are integrated backward from Tr to find 4D and IF

at any node. Multiplying Eq. (3.8) by ,-', solving for bx1 , and substituting

into Eq. (3.7) gives the desired relation:

xIk,61o0ba - 0,4'o 16zo = 0. (3.16)

This boundary constraint is combined with the performance index in

Eq. (3.3) to form a new augmented performance index

b' TG.,ba + Tooa- _, O 0 1&0o). (3.17)020
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Minimizing J' minimizes the change in the performance index due to a per-

turbation in the control, subject to the boundary constraint that relates the

control and the state vector. The matrix G.. is not necessarily positive definite

since Sa has both dependent and independent variations. However, the bound-

ary constraint is used to eliminate the dependent variations so the resulting

matrix is composed of only independent variations, and the performance index

is in quadratic form.

The first variation of this performance index is

i3' = (baTG. + 6vTO=..,to Ibo)b(6a). (3.18)

To satisfy the requirement that the first variation vanish, the coefficient of 6(ba)

must be zero. Therefore,

baTG.. + -VTp.kmI 0 1*O = 0. (3.19)

Solving for ba,

ba = -Gh'I •oT TOb.7 1 6V (3.20)

substituting into the constraint, Eq. (3.16), and solving for bv gives
Si/ --(=t! -1 -1 (3.21)

-" •~~~~0 •oAAO• 0 bl 0=~ xX. 3.1

Hence, Eq. (3.20) leads to

.Sa = KoSxo, (3.22)

where
Ko=GIT,-T.T .IT p•lT -tT,@-T /T -1./ ,1 (.3

K0  ~ O ='o- GX 0 . $Tp,)~~ (3.23)

is the gain matrix at r0 . Eq. (3.22) relates the change in the control required to

minimize the change in the performance index for a perturbation in the state

at x0 and still satisfy the final conditions.
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3.2 Single Trajectory Optimization

For continuous systems the neighboring extremal guidance law can

be applied throughout the trajectory. By the optimality condition [2], the tra-

jectory from each point along the optimal path to the final constraint manifold

can be thought of as the optimal trajectory from that point. As a result, the

gain equation for the continuous optimal control problem is valid throughout

the trajectory.

For the suboptimal problem, however, the optimality condition does

not apply. If the suboptimal trajectory has r control nodes, the suboptimal

trajectory from node 1 is an r-node optimal trajectory. From the second node

though, the suboptimal trajectory is an (r - 1)-node suboptimal trajectory.

Furthermore, in order to satisfy a suboptimal control problem with m bound-

ary constraints, at least m control nodes must be available. For a parametrized

control with r control nodes, m nodes are necessary to solve the boundary con-

ditions while the remaining r - m nodes (m < r) provide the optimization. As

a result, neighboring extremal gains can only be computed along the subopti-

mal trajectory at the first r - m + 1 node points. The remaining m - 1 node

points do not have enough control nodes to satisfy the boundary constraints.

The single trajectory optimization method computes the neighboring

extremal gains by evaluating the gain equation (Eq. 3.23) with the values of

0 and IF along the suboptimal trajectory. The differential equations, V' and

VI, are integrated back from the final constraint manifold to each node on the

suboptimal trajectory using the suboptimal control vector. Gain matrices are

computed at each node point up to node r - m + 1. Since the calculation of
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Kp is based on the nominal trajectory, the gains can be precomputed at node

points and stored.

Although the gain matrix at each node is an rxn matrix, where r

is the number of nodes and n are the number of states, only gains associated

with the current node are retained. Each gain matrix relates the change in

control along the suboptimal trajectory to an error in the state vector at a

node point along the trajectory. Obviously, control changes at nodes that have

been "passed" do not affect the current control and are eliminated. Similarly,

gains related to nodes "in front" of the current node are also eliminated. As a

result, the matrix reduces to a 1 x n vector.

Since each node along the trajectory corresponds to a particular r, the

gain vector at any mrp is found by linearly interpolating adjacent gain vectors.

As the last gain vector is at node r - m + 1, gain vectors beyond this node are

linearly extrapolated based on the last two gain vectors.
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3.3 Multiple Trajectory Optimization

The focus of this research has turned to developing another method

of computing the control gains along the suboptimal trajectory. This approach

uses reoptimized r-node control vectors from each node along the suboptimal

trajectory to compute the gain matrices. Fig. 3.1 depicts a five-node example

of a trajectory and subtrajectory. To prevent confusion, the trajectory from

any node to the final constraint manifold, except for the first node, is called

a suboptimal subtrajectory. The suboptimal subtrajectory from the first node

to the final constraint manifold is also the suboptimal trajectory.

Each subtrajectory control vector is slightly different from the sub-

optimal trajectory. As expected the suboptimal trajectory from node 1 is the

same as in the single optimization method. However, from the second node,

multiple optimization provides an r-node subtrajectory to the final constraint

manifold, while the single optimization method only has r - 1 nodes from the

second node to the final constraint manifold.

In the multiple optimization approach, the differential equations fore

and IF are integrated back to each node using the optimized control vector from

that node. Only the gain matrices at nodes along the suboptimal trajectory are

stored. In the case of node 1, the suboptimal control vector is used to integrate

@ and T back from the final constraint manifold to node 1. For a subsequent

node, the optimal control vector along the subtrajectory is used to integrate 0

and % back to the node. This process is repeated for the first r - m + 1 nodes

along the suboptimal trajectory.

The gain matrix at each node is reduced to a 1 xn vector by eliminat-
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Figure 3.1: Optimal trajectory/subtrajectory

ing gains that do not affect the control along the suboptimal trajectory. Since

the neighboring extremal path is based on the original suboptimal trajectory,

only those gains that affect the control along the suboptimal trajectory need

to be retained. Only the first row of the gain matrix at each node relates to

the control along the trajectory.

The hypothesis behind optimizing from each node point is that the

resulting gains are based on the most optimal r node trajectory from any node

along the suboptimal trajectory. In the single optimization method the gain

matrices are based on the original suboptimal trajectory from node 1, and

the control vector updates are also along this trajectory. Since the multiple

optimization approach bases its gains on the optimal r node subtrajectory

from each node point, the gain vector should produce a control update that is

more aligned with the most optimum path to the final constraint manifold but

still in the neighborhood of the extremal.



Chapter 4

Lunar Launch Problem

4.1 Optimal Control Problem

The test problem for this research involves injecting a vehicle into

lunar orbit in minimal time (refer to Fig. 4.1). The nominal solution to this

free final time problem produces a control history (thrust angle versus time)

that minimizes the performance index

J -=tf. (4.1)

The differential equations governing the trajectory are

S-- V (4.2)

6 = a cos 0 (4.3)

6 = asin - g, (4.4)

where a is the vehicle acceleration and g is the acceleration of gravity. The

differential equations for the downrange component are not included since they

are not constrained. The initial conditions are given by

to=0, yo=0, Uo=0, V0-= , (4.5)

and the final conditions by

yj = 50,000 ft (4.6)

14
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Figure 4.1: The lunar launch problem

ui -= 5,444 ft/sec (4.7)

vf = 0 ft/sec. (4.8)

These final conditions are the desired final states to achieve lunar orbit. The

quantities u and v denote the horizontal and vertical components of the velocity,

respectively. The final boundary constraints are combined into a vector, i/,

where

•, ---- J 0 (4.9)

54"1

For simplicity several assumptions are made. First, the thrust vector

and all motion is in the x-y plane. Second, it is assumed that the moon is

flat over the course of the trajectory so the lunar gravity vector, -, remains

constant with IgI = 5.32 ft/sec2. Finally, the ratio of vehicle mass and thrust

is assumed constant throughout the trajectory so thrust acceleration, a, is

constant. Based on previous research into the lunar launch problem [1], a
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nominal value of a = 20.8 ft/sec2 is assumed.

In its current form as a free final time problem, the upper integration

limit of the equations of motion is not fixed. By selecting a different indepen-

dent variable, the integration limit can be fixed, and the problem handled more

conveniently.

For the lunar launch problem, the control angle, 0, stays between 0

and 90 degrees during the ascent. As a result, u is monotonic and it is used as

the variable of integration.

With u as the variable of integration, several benefits are realized.

Since u! is the integration limit, the vehicle is certain to meet the required

horizontal velocity to achieve orbit. In addition, incorporating u into the limits

of integration reduces the number of boundary constraints since uf will, by

definition, be satisfied.

The state vector is rewritten as

XT [ t y v. (4.10)

To normalize by u! the variable i is introduced where

U - uo (4.11)
Uf - Uo

For the lunar launch problem, u1 - 5444 ft/sec and uo is the initial horizontal

velocity of the vehicle. For simulations and optimization of the nominal trajec-

tory from Ui = 0, u0 equals zero. For the single trajectory optimization Uo- = 0

during gain calculations, while in the multiple optimization scheme, uO equals

the horizontal velocity at each control node.
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The normalized differential equations are

Sx dx dt = g(x,ti,a). (4.12)
dii dtdudud

Therefore, the equations of motion are rewritten as

ti = (uj- uO) (4.13)
a Cos 0

yI = V(Ul- UO) (4.14)
a• Cos80

- (asinO-g)(u--uo) (4.15)

where

X [0 0 0], (4.16)

y!f 50000, (4.17)

Vf =0 (4.18)

and the limits of integration are

i1o=0, ji1=1. (4.19)

The suboptimal control vector is computed using the nonlinear pro-

gramming code VF02AD. VF02AD is an extension of a variable metric method

for unconstrained optimization applied to the constrained case. It searches for

an optimal solution until reaching a preset convergence criteria. Convergence

occurs when the change in the performance index between iterations is less

than the preset criteria. For all optimizations a convergence criteria of 10-9 is

used.
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For the single trajectory optimization, only the suboptimal control

from u0 = 0 to uf = 5444 ft/sec is computed. The suboptimal control consists

of nine nodes with an interval of 680.5 ft/sec between node points. Nine nodes

are selected for convenience, resulting in control nodes every 0.125i.

For the multiple optimization method, the nine-node suboptimal tra-

jectory from u = 0 is computed and used as a basis for the nominal, unper-

turbed control. Then the nine-node suboptimal subtrajectory from each node

on the suboptimal trajectory to the final constraint manifold is calculated.

The control vector for each subtrajectory gives the suboptimal nine-node con-

trol from u0 = 680.5(N - 1) ft/sec to uj = 5444 ft/sec, where N is a node on

the suboptimal trajectory. This results in eight suboptimal control vectors for

the multiple optimization approach.

4.2 Computation of the Neighboring Extremal Gains

To compute the neighboring extremal gains, expressions for G., 0fw/,

%F, and 0 are found.

The derivative, G., is calculated numerically using central differ-

ences. G.. represents the second derivative effect of a change in the parametrized

control vector on the performance index, G. Each element of a is perturbed

and the effect on the performance index is computed.

tk.,s is the partial derivative of the constraints with respect to the

state vector. 0., is a constant matrix with

0. 50000 1 (4.20)
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The differential equations for 0 and i are integrated backwards from

ti1 . The differential equation governing 0 is

dO--F =(4.21)

where
[X = Y- ] (4.22)

and

,o = I (4.23)

The matrix differential equation for T is

= g-I + g. (4.24)

where

%F! =0. (4.25)

In tb-R problem, %F is a 3x9 matrix and g. is the partial derivative of the per-

formance index with respect to the parameter vector a. Since aT = [01,"'., 0.],

g, can be written as

(uf - Uo) sin 0 V~o of•"'

aj--82 s Be (4.26)(a,-goin) Be (0 (O- 5.)

The control, 0, is linearly interpolated between adjacent nodes, so that

0(i) = 0i-I + Oi - Oi-' ( i 1 ), for <i-. - • • ii, (4.27)
fi -fii-1

and

0(ft) = Oi + 0i+1 - 0i (- th), for ii < i < ii+1 . (4.28)
Ui+1 - i
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The partial derivatives with respect to 0i, respectively, are

'00 - ii-l (4.29)

and
--6 1 - (4.30)Ui+il -- Ui"

The partial derivative terms determine the impact of a change in

the control on the two adjacent control intervals. However, Eqs. (4.29) and

(4.30) are both valid only for interior node points. For boundary nodes, these

equations break down since at either boundary, ii-- or fi+1 does not exist.

Therefore, over the first interval only Eq. (4.30) is valid while over the last

interval only Eq. (4.29) is used. Elsewhere, the partial derivative is zero.

With the differential equations for $ and IF, and the general gain

equation (Eq. 3.23), the gain matrices for the single and multiple optimization

trajectory are determined. Because the 0b, matrix has zeroes in the first

column, the gain matrix, K, also has zeroes in the first column. These zero

gains are not stored in either the single or multiple trajectory optimization.

Intuitively, the zero value of these gains makes sense. The gains in

this column relate deviations in t to control changes. As the final value of t

is not constrained, its variation from the optimal trajectory does not influence

the control. Conversely, a deviation from the nominal trajectory for y and/or

v will have an impact on the desired final conditions so a control change is

necessary.

For both methods eight gain matrices are computed from ii = 0 up to,

and including, fi = 0.875. At ii = 0.875 there are two nodes and two boundary
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constraints. At the last node (fi = 1) there are not enough nodes to satisfy

the boundary conditions. Also, since the last node is at the final constraint

manifold, it would take an infinite control to correct for perturbations.

4.3 Simulation

To test both gain calculation methods, simulations of the lunar launch

problem are made. Each simulation uses a fourth-order Runge-Kutta integrator

to simultaneously integrate the differential equations of motion for a perturbed

and unperturbed trajectory. The simulation integrates the equations of motion

using 40 steps for a step size of Afi = 0.025. The perturbed trajectory has either

lunar gravity or thrust acceleration perturbed ±5% from their nominal values.

The perturbed and unperturbed trajectories are sampled at each integration

step to determine the error vector, 6x. Simulations are done closed-loop using

a sample and hold technique for the control update. On each integration step

the nominal control vector is linearly interpolated while the control update

is held constant. To provide a basis for comparison, another simulation using

open-loop control is also made. The open-loop method uses the optimal control

in the presence of the perturbation with no correction to the nominal control

vector.



Chapter 5

Results

5.1 Single Trajectory Optimization and Simulation

For the single trajectory optimization the nonlinear programming

code VF02AD is used to calculate the nine node suboptimal control starting

at ii = 0 up to, and including, fi = 1. VF02AD returns the following results:

01 0.4539471496 26.00925579
02 0.4068478813 23.31066650
03 0.3580472572 20.51459670
04 0.3079740487 17.64561319
0 = 0.2592985250 rad. = 14.85671112 deg. (5.1)
06 0.2077640929 11.90400566
07 0.1567470292 8.98094322
0s 0.1048252859 6.00604647

L 09J 0.0528867033 3.03018489

With this control history, the vehicle reaches the following final conditions at

u! = 5444 ft/sec on the unperturbed, nominal trajectory:

t = = 272.7061 sec (5.2)

y = = 50000.0005 ft (5.3)

v! = 1.3987x10- 6 ft/sec. (5.4)

The gain program uses the suboptimal control history and the gain

equation to compute the optimal control gains. The gain vectors to three

si•-nificant figures are shown in Table 5.1.

22
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NODE t NODE GAINS
Y j V

1 0.000 -0.369E-5 -0.673E-3
2 0.125 -0.289E-5 -0.462E-3
3 0.250 -0.385E-5 -0.521E-3
4 0.375 -0.573E-5 -0.640E-2
5 0.500 -0.940E-5 -0.831E-2
6 0.625 -0.179E-4 -0.118E-2
7 0.750 -0.461E-4 -0.201E-2
8 0.875 -0.267E-3 -0.581E-2

Table 5.1: Single trajectory optimal control gains for nodes 1 through 8

To check the accuracy of the gains, a numerical derivative method is

used. The original gain matrix at each node relates the error in the state (dif-

ference between the perturbed and nominal trajectory) with the change in the

control at each node along the trajectory, required to keep the perturbed tra-

jectory in the neighborhood of the extremal. This relationship can be expressed

as

ba = Kbx. (5.5)

As a result, K can be approximated as

K 8a (5.6)

Table 5.2 shows a comparison of the gain matrix at node 1 (before eliminating

extraneous gains) computed with the gain equation and numerical partials.

Most of the differences in the values of the numerical partials can

be attributed to accuracy and round off errors in VF02AD. To compute the

derivatives, VF02AD calculates the optimal control based on a perturbation in

the state vector. The state pertrubation is 10-1 while the convergence accuracy
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IIGAIN MATRIX FOR 0=
GAIN NUMERICALI EQUATION I PARTIALS ]

-0.369E-5 -0.673E-3 -0-353E-5 -0.676E-3
-0.';,43E-5 -0.559E-3 -0-283E-5 -0.558E-3
-0.i92E-51-O.439E-3 -0.193E-5 -0.439E-3
-0.980E-6 -0.313E-3 -0.999E-6 -0.313E-3
-0.265E-8 -0.183E-3 -0.117E-6 -0.185E-3
0.100E-5 -0.480E-4 0.110E-5 -0.446E-4
0.203E-5 0.898E-4 0.200E-5 0.904E-4
0.306E-5 0.230E-3 0.252E-5 0.228E-3
0.410E-5 I0.370E-3 H .511E-5 I0.369E-3

Table 5.2: Numerical partial approximation of control gains for node 1

for VF02AD is 10". This produces significant figures on the order of 10'.

Therefore, for extremely small gains (i.e. -.265E-8) the numerical partials do

not agree favorably with the calculated result.

Tables 5.3 and 5.4 show the simulation results using the single opti-

mization gains. Each table lists the error in the final values for y and v from

the desired final conditions. To provide an additional basis for comparison, the

open-loop results have also been included.

Simulations using single optimization gains show a marked improve-

ment in the final conditions over the open-loop results. Positional errors due

to acceleration perturbations are better handled than errors in gravity, how-

ever. Velocity errors at uf are approximately the same regardless of whether

the perturbation is due to gravity or thrust accelerations.

Figs. 5.1 and 5.2 depict the history of the position and velocity error

as a function of the variable of integration, ii. When viewing the graphs it
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__ _ Change State Deviation from Optimal

(it 1  in Q.. Closed Loop Open Loo3
19.7601 -5.0 y 10.530 -8328.003

Iv -2.821 -76.358
21.84 +5.0 y -17.592 6590.498

v +0.811 2.987

Table 5.3: Single optimization method for ±5% modeling error in thrust accel-
eration

[--% --- +5%[
S 300I2 0 0 -..-.-.-.-- ---------- ....... ............ ... ... g .,.. ... ..+ .. ..............

Z 100 . . .. ........ . .- .......................
0 E0 . ... ......... t ....... ............. i..... ................ 4 ..................... .... ... ......... .

00 - ------ -- - ----
-soo2°° . ................... . ..... ........... ...... .............. 4 .- .................. ................... I-

S -200 ...........----------
4...............-------

• -300 . ... ......... • ..... ... ...... ... .. .... ............. ....... ........"..................
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>0t 0.4 016 0!8t

u BAR

.:

15 .......... ............ r • " - ....... .: ........ ...... "..................... 1-10... ..:. .. ...........
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-0 -•I" ............ ..... •.. .........................---- ------------ ...
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_ 10- .. .....
S -15 - - --------- ...... .. .

0 .......... . .:. . . ....... .. .... .. .. -............. . ... ..

.0'2 0.4 0!6 0!8
uBAR

Figure 5.1: Single optimization, acceleration perturbation
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g l % Change State Deviation from Optimal
{,} in g Closed Loop Open Loop

15.0541 -5.0 y 65.178 9891.024

I v -2.705 72.540

5.586 +5.0 y -63.989 -9891.023
v 2.616 -72.540

Table 5.4: Single optimization method for ±5% modeling error in lunar gravity

I -5%---+5% I
iA 2000-_ __1500o -------.-- ..... . ..... .............. .. ............. ............... ......

1 500-- - .-

0 50 .. -..........

0
-500 . . . ..... ........ ...... .. ............-1000 ......... . ......... -.-• . ........... . ........... .. ................

S-1500 . ..................... ................. • .. .. .-- .-. -- . ....... ....................

S-15000e --20000 02 014 016 0:8

uBAR

0 40 -! !
0 ..-..... . ........... - ..... ............... .. ........

2 0.. . •....... ....... . .L-.---- -------
.o. ... ..... " .... ... 4 , .... ............ .,. .....

I - -.. ------ ..
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.2 . ....... ......... .. ..........- ...........
-20 . ....-.. ...............
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Figure 5.2: Single optimization, gravity perturbation
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must be remembered that the objective of the guidance law is to operate in

the neighborhood of the extremal path. As a result the position and velocity

errors will not normally converge to zero until later in the trajectory.
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5.2 Multiple Trajectory Optimization and Simulation

The multiple trajectory optimization method also uses a nine-node

optimal trajectory as the basis for the nominal control. A nine node optimiza-

tion is then computed from each node on the suboptimal trajectory to the final

constraint manifold. Table 5.5 shows the resulting optimal control vectors from

each node. As expected, the optimal control from node 1 is the same as the

single trajectory optimization.

Table 5.6 lists the optimal control gains at each node. Compared with

the single optimization gains, the multiple optimization are up to twice as large

as gains produced under the single optimization method. Gains at either ends

of the trajectory are approximately equal.

To verify the accuracy of the gains, a numerical partial approximation

is made similar to that discussed in the previous section. Table 5.7 shows that

the numerical partials agree extremely well the gains computed using the gain

equation.

Tables 5.8 and 5.9 and Figs. 5.3 and 5.4 present the results of the

simulation for the multiple optimization case.

On the whole, comparisons of the multiple and single optimization

methods produced mixed results. For acceleration perturbations, single opti-

mization gains gave slightly better results than multiple optimization methods.

On the other hand, end point conditions for the multiple optimization approach

in the face of gravity perturbations were, relatively speaking, much better than

single optimization results.

Figs. 5.3 and 5.4 depict the history of the error of y and v from
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NODE 1 NODE 2 1 NODE 3 1 NODE 4
5i=0 j u=0.125 i= 0.250 f= j0.375

0.45394715 0.40634061 0.35766840 0.30858725
0.40684788 0.36445945 0.32136083 0.27792256
0.35804726 0.32106646 0.28359996 0.24597137
0.30797405 0.27670197 0.24516890 0.21360186
0.25929852 0.23386572 0.20826123 0.18270982
0.20776409 0.18867334 0.16951886 0.15027212
0.15674703 0.14389432 0.13098104 0.11795366
0.10482529 0.09830906 0.09183870 0.08527328
0.05288670 0.05291161 0.05305770 0.05300320
INODE 5 NODE 6 NODE7I NODE81
i = 0.500 ft = 0.625 ii = 0.750 fl = 0.875

0.25871156 0.20780274 0.15648354 0.10482639
0.23386278 0.18893294 0.14341997 0.09789380
0.20798410 0.16950645 0.13168537 0.09302267
0.18175316 0.14960138 0.11570712 0.08265920
0.15684631 0.13073685 0.10902890 0.08325916
0.13100243 0.11166393 0.08838203 0.06894193
0.10496646 0.09213030 0.08020577 0.06716968
0.07866887 0.07212200 0.06518209 0.05876025
0.05283867 0.05292930 0.05343331 0.05345789

Table 5.5: Optimal control vectors for nodes 1 through 8 (radians)

NODE I NODE GAINS
y v

1 0.000 -0.369E-5 -0.673E-3
2 0.125 -0.494E-5 -0.780E-3
3 0.250 -0.688E-5 -0.921E-3
4 0.375 -0.101E-4 -0.112E-2
5 0.500 -0.161E-4 -0.141E-2
6 0.625 -0.290E-4 -0.190E-2
7 0.750 -0.661E-4 -0.288E-2
8 0.875 -0.267E-3 -0.580E-2

Table 5.6: Multiple optimization control gains
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GAIN NUMERICAL
EQUATION PARTIALS

-0.369E-5 -0.673E-3 -. 353E-5 -.G75E-3
-0.494E-5 -0.780E-3 -.495E-5 -.781E-3
-0.688E-5 -0.921E-3 -.688E-5 -.922E-3
-0.101E-4 -0.112E-2 -.101E-4 -.112E-2
-0.161E-4 -0.141E-2 -.160E-4 -.141E-2
-0.290E-4 -0.190E-2 -.290E-4 -.190E-2
-0.661E-4 -0.288E-2 -. 656E-4 -.286E-2
-0.267E-3 -0.580E-2 -.267E-3 -.577E-2

Table 5.7: Numerical partial approximation of control gains

nominal as a function of u for perturbations due to thrust acceleration and

lunar gravity. Both figures show that the multiple optimization gains provide

good control of the error and an almost asymptotic approach toward zero error

at up.

The thrust acceleration perturbation graph (Fig. 5.3) illustrates an

apparent inconsistency due to the change of the variable of integration. In

the graphs, an error in velocity does not change sign while the position error

oscillates once around the zero error axis. The reason for this has to do with

normalizing the equations of motion with u! instead of tf.

Changing the variable of integration to u means the position vector

becomes a function of u instead of t. Therefore, to compute an error vector,

the state vector of the perturbed trajectory at some up is compared with the

state vector of the nominal trajectory at the same up. These two points along

the trajectory, however, do not occur at the same point in time. As a result,

while an element of the perturbed state vector, for example yp, may be greater

than the nominal trajectory at up, yp may still be lower than it should be for
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a~ % Change State Deviation from Optimal

.,j in aClosed Loop Open Loop

~119.60 1 -5.0 y 13.757 -83281.003
IL I" -3.630 -76.358

121.84 +5.0 y 7.1812 6590.498
1 1Iv 4.300 69.086

Table 5.8: Multiple optimization method for ±5% modeling error in thrust
acceleration.

06 0'
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01 100. .-...-........t,.......... ... . . . .--L.-- ..---..-. -.. ..
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Figure 5.3: Multiple opt~~~~~Imiain hutaclrto etrain
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g % Change State Deviation from Optimal
L,•L' in _ o o Open Loop

5.054 -5.0 y 47.558 9891.024
v -1.767 72.540

5.586 +5.0 y -47.295 -9891.023
v 1.741 -72.540

Table 5.9: Multiple optimization method for ±5% modeling error in lunar
gravity.
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Figure 5.4: Multiple optimization, gravity perturbation.
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Figure 5.5: Altitude versus time

the same point in time. Fig. 5.5 shows the plot of the y element as a function of

time for a -5% error in thrust acceleration. As can be seen, the -5% perturbed

trajectory does not exceed the nominal trajectory.



Chapter 6

Conclusions

The purpose of this research is to develop a more optimal method

of computing the control gains at each node through multiple optimization.

Multiple optimization reoptimizes the trajectory from each control node on the

suboptimal trajectory. Each subtrajectory from a node to the final constraint

manifold has the same number of control nodes, r, as the original suboptimal

trajectory and represents the optimal r-node solution. The suboptimal control

vector for each subtrajectory is used to compute the control gains. These gains

are more aligned with the most optimal path from a node to the final constraint

manifold.

To test the control law, simulations are made using a representative

optimization problem, the lunar launch problem. The lunar launch problem

involves placing a vehicle into lunar orbit in minimum time subject to con-

straints on the final states. The simulation integrates the equations of motion

for both the perturbed and unperturbed (nominal) trajectory. The value of

each state vector at each integration step is sampled and used to determine the

error vector. Multiplying the error vector by the control gains gives the control

update to be applied to the perturbed trajectory.

Neighboring extremal guidance using gains calculated by multiple op-

timization methods produce results comparable to the single trajectory opti-

34
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mization method. For perturbations of ±5% in either gravity or thrust acceler-

ation, endpoint conditions using multiple optimization gains never exceed more

than 48 feet in position and 4.3 ft/sec in velocity from the desired final con-

ditions. Single optimization gains give nearly the same results with endpoint

conditions never varying more than 65 feet and 3 ft/sec from the desired final

conditions. Comparisons of each method for a specific model perturbations give

mixed results, with multiple optimization delivering smaller errors in the final

conditions for perturbations due to gravity and single trajectory optimization

performing better for thrust acceleration errors.

These observations are made cognizant that the sample problem in

this research does not define an acceptable error for the final conditions. Pre-

vious research [1] has used the criterion that the percentage error in the final

states should not exceed the percentage error in the perturbation. Unfortu-

nately, for errors in yj this criterion seems rather liberal and is easily met by

both the single and multiple optimization method. Conversely, a 5% error in

vt is zero, a little too restrictive.

One area for further research is to explore the impact of increasing

the number of control nodes along the trajectory. Increasing the number of

control nodes and, hence, the number of gains decreases the the gap between

the point at which the last gain matrix exists, and the final constraint manifold.

This approach should improve guidance near the end of the trajectory and

subsequently decrease the error at the final constraint manifold.
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